Quantum Hall and Insulating States of a Broken-gap 2-D Electron-hole System

K. Takashina¹, R.J. Nicholas¹, C. Petchsingh¹, N. Mason¹, D.K. Maude², J.C. Portal² ¹University of Oxford, UK ²LMCI-CNRS, Grenoble, France xford EU & EPSRC of UK vsics

Talk Outline

- Insulating states $\sigma_{xx} = 0; \ \sigma_{xy}^{\text{net}} = \sigma_{xy}^{\text{e}} + \sigma_{xy}^{\text{h}} = 0$
 - Novel behaviour
 - Edge-channel conduction [Physica B 298 28 (2001)]
 - Magnetoconductance fluctuations
 - In-plane magnetic field
- Quantum Hall states $\sigma_{xx} = 0; \ \sigma_{xy}^{\text{net}} = \sigma_{xy}^{\text{e}} + \sigma_{xy}^{\text{h}} \neq 0$
 - Breakdown and current dependence [Physica B 298 8 (2001)]
 - Width dependence

InAs/GaSb Broken Gap System

GaSb InAs GaSb

Landau levels in magnetic field

Behaviour of quantized Hall conductance:

 $R_{H} = -h/e^{2}(v_{e}-v_{h})$

consistent with $\sigma_{\rm net} = \sigma_{\rm e} + \sigma_{\rm h}$

[Mendez et al., PRL 55 2216 (1985)]

Landau levels in magnetic field

Insulating state forms with increased $n_{\rm h}$

ρ_{xx} oscillates between 'metallic' and 'insulating' behaviour

Insulating state: $v_e - v_h = 0$

- The Hall resistance becomes symmetric under field reversal.
- Values larger than 50% of ρ_{xx} (R_{xx} /sq.).
- No functional relation with R_{xx} .
- Reproducible fluctuations.
- Macroscopically large samples.

Electron edge states

Holes: Counter-propagation

Draw system in terms of single carrier type v = 1 bars.

Equivalent circuit for Hall bar:

A measured longitudinal resistance would give $R_{xx} = (V_1 - V_2)/I_{SD} = h/2e^2$

Interactions and Anticrossing

No interactions & scattering = no insulating behaviour.

Strong interactions = Completely insulating.

Gaps may form where $E_{\rm f}$ cuts the gap.

Changing the magnetic field moves the gap in

The Fermi energy cuts the gap at different positions in space.

Conduction depends on strength of interactions and disorder

Global Picture

- Potential dropped **between** sections.
- Arrangement depends on disorder and LL energy.
- Symmetric Hall resistance.

Geometry effects - No Edge State connections for Corbino Disc

Directly Compare Conductivity

Temperature Dependence

- Hall bar resistance saturates at low temperature.
- Corbino disc continuously insulating.
- No fluctuations in Corbino disc data.
- Data reconciled with.

$$\sigma_{xx}^{Hall} = \sigma_E + g\sigma_B.$$

Edge Channel Properties

What we have shown so far:

- Edges contribute conductance with fluctuations.
- Edge-states must be drastically altered.

Immediate questions:

- Fluctuations Energy or Phase effect?
- Is the conduction really affected by interactions between e and h edge states?

Look at dependence on:

- Width and Length
- In-plane magnetic field

2 Contact Length and Width Dependence

In-plane field + 2-Contact Bars

- Background changes smoothly.
- Minima at high and low field regions.
- Conductance decreases with in-plane field.
- Small fluctuations change completely from one angle to next.
- Fluctuations decreases as conductance decreases.

• Phase coherent sections contribute e^2/h .

Universal Magnetoconductance Fluctuations

Sections of conductance g, fluctuates by $dg (= e^2/h)$. Add N resistors r in series. (r = 1/g)

$$-\underbrace{N}_{r, dr} \xrightarrow{r, dr} \underbrace{r, dr}_{r, dr} \xrightarrow{r, dr}_{N}$$

Total conductance, G = g/NTotal resistance, R = Nr, $dR = N^{1/2}dr$ $dG = G^2 dR = G^2 N^{1/2} (dr/dg) dg = (G/g)^{3/2} dg$

$$dG = (G/g)^{3/2}(e^2/h)$$

No. of sections change with field

- Length of section l_s is long if localization length λ is short.
- If each section has conductance g, G decreases as λ increases.
- I.e. G^{edge} is max. when σ_{xx} min.

$G^{\rm bar}$ has opposite behaviour to σ_{xx}

 G^{edge} decreases as localization length increases - more, shorter sections

- All samples obey overall trend.
- $dG \sim G^{3/2}$ works well at large *G*. System well described as made up of characteristic sections of conductance *g*.

Summary of Insulating State

• Conduction dominated by edges.

- Fluctuations ~ UCF.
- G^{edge} has opposite behaviour to σ_{xx} due to interactions between e & h edge channels.

 $dG = (G/g)^{3/2}(e^2/h)$

Compensated Quantum Hall Effect

How do $v_e - v_h = 0$ and $v_e - v_h \neq 0$ differ? Current distribution? Are edges important?

- Breakdown (current dependent) behaviour
- Width dependence

Larger I_c for $n_e: n_h \sim 2:1$

Magnetic Field Dependence

• $W_{\rm c}$ varies systematically with field

Closely matched $n_e: n_h$

500 µm wide bar, $n_e = 6.3$, $n_h = 4.3 \times 10^{11} \text{cm}^{-2}$ 50 mK. Define $I_c = I_c (V_{xx} = 20 \text{ µV})$

(Rigal et al, PRL 82 (1999) 1249)

Kawaji et al. J. Phys. Soc. J, 63 (1994) 2303

170μA, 120μm n-type GaAs/(AlGa)As *v*=2, 10T

Stoddart et al. Microelectronic Engineering 47 (1999) 35

9.2 μA , 200μm p-type GaAs/(AlGa)As *v*=1, 4.4T

Width Dependence: even 400 µm bar is 'Fragile'!

•Small I_c , sensitive to disorder

'Fragile' regime once width is comparable to wide disordered regions: critical width W_c

Compensated Quantum Hall Effect

Breakdown Summary

- Ohmic width dependence for wide samples
- Fragile behaviour for 'narrow' samples
- $W_{\rm c}$ depends on $E_{\rm F}$ and $E(\rm LL)$ (*B* dep.)
- Strong influence of disorder when I_c is small

Current flowing in sample interior, inhomogeneous on a scale W_c .

Summary

- $v_{\rm e}$ - $v_{\rm h}$ = 0 Insulating States
- $\sigma_{xx} = 0;$ $\sigma_{xy}^{\text{net}} = \sigma_{xy}^{\text{e}} + \sigma_{xy}^{\text{h}} = 0$
- Current carried by edgechannels, dominating behaviour
- Interior totally insulating

 $v_{\rm e}$ - $v_{\rm h} \neq 0$ 'Metallic' States

•
$$\sigma_{xx} = 0;$$

 $\sigma_{xy}^{\text{net}} = \sigma_{xy}^{\text{e}} + \sigma_{xy}^{\text{h}} \neq 0$

• W dependent current dependence

• Current in sample interior