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Abstract

We present a procedure to sokip theory for semiconductor heterostructures usirg th
envelope function approximation solved in momengpace. The technique which we term the
momentum matrix method, solves the band structdresemniconductor superlattices very
efficiently by transforming the Hamiltonian and aléc potentials intk-space. The method also
successfully tackles the spurious solution probégpearing through the incompleteness of the
Hamiltonian. We outline the theory behind this mdare and demonstrate the ability of the
method to model a variety of heterostructure phesran including self-consistency,
perpendicular magnetic field, electric fields andpithg. The method shows substantial
advantages over other non-self consistent modelBype-Il crossed gap systems where the

definition of charge density is not straightforward
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|. Introduction

K.p theory was first constructed over forty years &m@xplain cyclotron resonance in
bulk materials [1,2]. Since then it has been applie numerous materials, both bulk and
heterostructures [3-6] and is widely used todaytli@r design of opto-electronic and electrical
devices [7-8]. Althoughk.p theory was initially developed for bulk materiais,has been
successfully extended to model heterostructuresgusiie envelope function approximation
(EFA) [9-10]. A number of different methods are diseithin the EFA to solve the band
structure the most common being the transfer-mdttix-13], finite difference [14], finite
element[15], and scattering matrix [16] technigudsese methods however suffer a number of
complications when applied to heterostructuresstlfir the problem of matching envelope
functions at the interface is still not completsdgolved, and is a source of continued debate [16-
18]; and secondly the techniques in their simpi@shs are limited to flat band potentials, thus
limiting the modelling of charge transfer, electfields and doping. This second point can be
overcome by using a mesh technique where the layersplit into a number of sub-layers with
the band potential varying between sub-layers.ifeumore the commonly used transfer-matrix
technique is beset by the problem of spurious mwmistwhich relates to the solutions whose
wavevectors exist well outside the first Brillownne. Although the spurious solutions relate to
unphysical states and can lead to numerical prablemspurious energy solutions [19], they
cannot simply be dropped as they influence the iphlsstates of the structure. Although
methods have been developed to try and overcorse freblems, the above techniques are still
only suited to thin-layer structures with flat ceanly flat band potentials. Alternatively one can

move to approaches based on the use of pseudapstemhich overcome many of the



fundamental problems of an EFA [20] but which &l guite computationally demanding and
give less relative accuracy.

In this paper we build on the work of Winkler andsRler [21] who showed how the
EFA can be successfully transformed into momentyacs, thus avoiding the problems
explained above. The previous work is extended teensodel superlattices, and we show how a
general model can be designed so as to calculatbathd structure of any IlI/V semiconductor
heterostructure (single heterostructure, quanturth eresuperlattice), with an arbitrary layer
sequence and doping profile. The technique, whiehtevm the Momentum Matrix Method
(MMM) is then extended to include the effects ohtaccupation and charge transfer using a
self-consistent routine. In most of the work desedi here we use the MMM to model the
crossed gap system InAs/GaSb. In such a case fmtide of the self-consistent potential is
non-trivial, and cannot be simply related to aregnation over electron (hole) states below
(above) the Fermi level as one would perform inidewgap Type | heterostructure. We discuss
this final point in detail as there is a lack ofteréal and some misunderstanding on this subject

in the literature.

Il. The momentum matrix method

The use ok.p theory to model the band structure of bulk matésiaugely simplified by
considering the symmetry of the lattice. A carnewving through the structure sees an infinite
number of nuclear cores at defined lattice siteshthat the structure of lattice sites surrounding
a particular site can be simply related to thecétme surrounding any other site using defined
symmetry operations. This periodicity however iskan in heterostructures, as different layers

of material alter the form of the crystal latticedifferent locations. The method commonly used



to overcome these difficulties is the envelope fiomc approximation (EFA) which we will
briefly outline before detailing the MMM. For thewklopment of the EFA we consider the case
of a simple binary superlattice consisting of altg¢ing layers of two bulk materiafdsandB with
widthsd; andd,, respectively (Fig. 1). The materiadsandB are 1lI-V or 1I-VI semiconductors
with a bulk band structure which is well describl®dthek.p Hamiltonian, having conduction
and valence bands with band edges Wighl"; andl"'s symmetry properties. We consider an
eight band description of the band structure inclgdhe J = %, heavy hole and light hole bands
along with theJ = ¥ spin-orbit split off band and th@ = % conduction band states. The Kane
basis states [1,3,4] that we use are shown in Thldlethe EFA the modelling of superlattices is
achieved by assuming that the wavefunction caniiéw as a linear superposition of the Kane
basis states (as in the bulk case), which are ratetliby a function which is slowly varying over
the unit cells - called the envelope function. Tisisvritten as follows where we have taken the

heterostructure confinement direction to lie pafalh thez-axis:

r
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m

(1)

The general envelope function has been separaie@menvelope functioﬁm(z) and as yet an
unspecified functiony,,(x,y) which modulates the wavefunction in the plane of tlyers In

this paper we consider the band structure of supedattnd hence Equ. 1 is modified by the

superlattice Bloch condition:
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with g taking values—-Z < q <%, whered=d;+d,. This in essence is the approximation used in

the EFA — though the actual approximations contained withsnatre more complex [22]. Firstly
this approximation assumes that the Kane basis statesidentical in all layers, though
calculations performed using different Kane basis state each layer indicate that this
assumption is valid for most materials [23]. Secontlly tise of the same basis states in each
layer removes any atomic information about the interfdm perform calculations that include
such details, the states must be built from atomic orjR4i25].

To solve the band structure using the MMM, we construoigix which represents the
evolution of the wavefunction in momentum space. The modetains the basic elements of
pseudopotential techniques [26] and is an extension of ¢k @f Winkler and Rossler [21] to
superlattices. As well as being flexible with respecb&and edge potentials and layer thickness,
the method is also algorithmically compact, being falscribed by only a few equations. The
starting point for the MMM is to describe the wavefuncgion terms of the EFA as detailed

above. The Schrodinger equation for the structure is simply:

A,B A,B A,B - A,B
(HAesv~B) g ~5(r) = Eg*2(r) @)
where V*® is the offset between the bands in the constitumik materials. The bulk

Hamiltonian matrix is separated into coefficients of ginewth direction momentum operathy.

A Hermitian form for these coefficients must be chgsdthough there is no unique Hermitian

formulation [27], we choose the form:

Hy(r) = [kHok, + 3 (HK, +kH) + Holw(r) = Eglr) @)
Instead of turning to real space to determine the prdpagaf the wavefunction through each

material layer, the periodicity of the superlattice isleitpd. Thek.p Hamiltonian, potential and



envelope functions are periodic in real space with aogmity of the superlattice periat] and

thus can be represented by a summation over Fourier components

G =2 :
j d wherg=0,1,2..FF (5)
FF is the number of Fourier components used in the caienlathich is an important input

parameter, the number of Fourier components requiggekrling on the complexity of the
structure that is being modelled. This will be discudsether later on. The only term in Equ. 4
that does not contain this periodicity is the superlafficeh term €%, which is operated upon
by the terms in the Hamiltonian. The Hamiltonian, potergiad envelope functions can then be
written as functions of the Fourier components ®f Re-writing Equ. 4 irk-space yields the
following equation, where the coefficients of the opar&tarepresent the Fourier transform of

the corresponding components in Equ. 4:

{k,H,(2k, + 5[H,(Dk, +k,H, (2] + Ho () +V (2} 1,.(2) = E,, f..(2) (6)

where:
. FF G FF G
H,(2) =Y H/&®" V(2)=) Vv'e™” fo(2)=) foe™
' =0 j=0

FF is the number of Fourier terms used arid the superlattice period. It can then be shown that

the Fourier coefficients of the Hamiltonian, potential and &Epesfunction are related by:
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This can be re-written as a matrix eigenvalue eqnat
M(q)F = EF (8)

The elements of eigenvallke are the Fourier coefficients of the envelope fiomct,, and the

matrix M(q) is defined:



— j—k j—k j—k j—k
Mjk(q)_(q+Gj)(q+Gk)H2 +(q+}/2(Gj +Gk))H1 tHy, " +V )
To obtain the electronic band structure of the dafiece at zero magnetic field the envelope

function in thex andy directions is replaced by plane wavqs(x, y) = e%*d“” The values of
(ks,q) at a given point are entered into tM{g) matrix which is then diagonalized. The
eigenvalues of the matrix are the eigenenergied, tha corresponding eigenvectors are the
Fourier coefficients of the envelope function. Tatal dimension of thé(g) matrix will be the
dimension of the Hamiltonian, multiplied by the noen of Fourier terms which can be of the
order of 20-30 for the most complex structures.sT'far 8-band Hamiltonians thd(g) matrix
can be as large as 24&0. Although this is much larger than the matricestandard transfer
matrix approaches (the matrix being twice the sofethe Hamiltonian), the matrix is
diagonalized only once pek;(q) point, with the accuracy of the eigenvalues deieed solely

by the number of Fourier terms used. For most efwiork performed at zero magnetic field we
have used a4 Block diagonalization of the matrix [28] so asréaluce the computing time. In
this Block diagonalization the warping paramei@r gresents a problem (these non-symmetric
terms cannot be Block diagonalized) and althoughe@ treats this term as a perturbation we
setpu=0 (known as the axial approximation). The errorseglecting these terms are found to be
small, only appearing at large valueskoparallel [28] . By calculating the subband enesgie
separately at eack/(q) point, the method does not directly evaluatedispersion relations of
guantum confined subbands, as in the transfer xnapproach. Thus in the above formulation
the idea of a “subband” is not a well defined quamnhumber as in the Kronig-Penney model.
Instead, a series of eigenvalues at e#&glg)(value are found which are matched so as to form

subbands.



A similar procedure is used to obtain the bandcsiine at finite magnetic field. The
envelope functions in th& andy directions are replaced by the harmonic oscillat@ave
functions, which account for the magnetic field mjisation of the states into Landau levels. To
solve the structure in magnetic fields, one diagpes the Hamiltonian with magnetic fiel
and Landau level index as input parameters. Since indeis actually the superposition of the
spin and the in-plane angular momentum, not alllthsis states necessarily contribute to the
eigenstates due to the different spin the basisesalWe have followed the standard procedure
to derive and determine the matrix at a given Lanael index [29]. In the magnetic field
calculations a full 88 matrix is used, as a block4l diagonalization is not appropriate.

For both cases the total wavefunction of a statebeaexpressed as:
r FF _
Ylr)=e*y > @ € X, (x M|T,)
n j=0

(10)

whereg' stands for th¢" Fourier term of the™ Kane state.

An important point to consider is the number of F@uterms used in a calculation, and
how this affects the validity of the calculatiorarfost structures discussed in section IV of this
paper the number of Fourier terms was quite snsall,at 12 or less (the actual number is
presented with each set of data in the sectionpr & general guide we consider that the
minimum number of Fourier terms used should beanr@l, should also relate to the superlattice
period such that:

FF =d /25
The superlattice period being in Angstroms. For the case of structures contamimgxture of

very narrow and wide layers this number will need tarflmeeased. However the small number



of Fourier terms that are used means that we arealotillating the superlattice zone folded
bands, as the Fourier series is truncated well bef@dtillouin zone boundary. Although this

removes the problem of spurious solutions in this modiel,ttuncation of the Fourier series
affects the eigenstates far away from the superld@ral gap, limiting the energy range over
which the model is applicable. Calculations have shown that model is successful in

accurately determining eigenstates which are confingdhe heterostructure potential. The
model becomes less accurate when determining un-cortjulkdike states.

To show how the accuracy of the confined energy levedge®ko the number of Fourier
terms used in the calculation we have performed a&seai calculations on the InAs/GaShb
superlattice which is described further in section THe results are presented in Table 2. The
calculations were performed self-consistently (seligistency is described in detail in the next
section) and the only parameter that differed batvikem was the number of Fourier terms. It
can be seen that even with only 8 Fourier terms thetsesfithe calculation are quite close to
those obtained with many more terms. When designing coatetl structures it is found to be
extremely useful to perform calculations with only avf€&ourier terms, until the structural
composition is close to what is desired, then repeatd®ilations with many more terms to

obtain accurate results.

[11. Self consistency

Although this model is applicable to any heterostructarmed from bulk 1lI-V or 1I-VI
semiconductors, we have been most concerned with modelénigatind structure of the crossed
band gap system InAs/GaShb. In this case for wider pestiacttures intrinsic charge transfer

takes place from the GaSb to InAs layers [30,31], wieeld$ to significant but slowly varying



contributions to the potential due to Coulomb effects. Thisireguhe introduction of a self-
consistent routine, which can also allow us to model dffects of selective doping in
heterostructures. To do this we have developed a se$istent component to solving the band
structure so as to account for the single particle Coulombilbotibn of the occupied bands. We
will first outline the self-consistent procedure, and tHe&tuss how this is manipulated in Type
Il systems with highly coupled bands.

The band structure is initially calculated usingat fiand potential, without considering
the effects of the Coulomb potential. This enablestausnodel any structure without prior
knowledge of the band structure or the constituent elemivat make up the superlattice.
Although an initial guess of the band-edge potential paed up convergence, we find that the
lack of an initial guess costs no more than threatitans in the worst case. The next stage is to
evaluate the position of the Fermi level, which isnelosuch that charge neutrality exits
throughout the structure, and must account for: occupatiarieatron states below the Fermi
level, occupation of holes above the Fermi level, anceffexts of extrinsic doping. Given the
position of the Fermi level the carrier occupation of the bands camdbeated, which enables us
to derive the self-consistent potential. This is built igpnf: the band offsets of the materials, the
Coulomb potential of the occupied states and the Coulor@npal of the doping. The Coulomb

potentials of the occupied states and doping contributions avedeising Poisson’s equation:

-0%V _A2) (11)

&

;
where ,o(z) represents the spatial variation of the charge widctierived directly from the

summation of the wavefunctions of the occupied statited to the spatial variation of the
donors or acceptors. Conventionally in Type | structuressttmmation over electron and hole

like charges is trivial. For example, taking a AlAs/Gaguantum well, then-type charge is
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summed over states above the GaAs conduction band, amdtthe charge is summed over
charge below the GaAs valence band. This is not howeveayalivue, especially for Type |
structures, and this is discussed in detail later. Tbalomb potential is then obtained by
integrating the charge distribution twice, with the twonstants of integration simply
representing the electric field across the superlaftisaally set to zero) and the zero of energy
(which is set to the bottom of the conduction band).

The self-consistent potential is then added to the b#edte between the materials, and
the band structure re-calculated using this potentialnfest of the calculations presented in this
paper self-consistency was reached within twelve iteratithsugh for more complicated
structures over twenty iterations were needed. To @ergence a mixture of the current and

previous potentials are used to avoid oscillating solutions

V. Defining chargein Typell structures

In this section of the paper, we present calculataminAs/GaSb superlattices using the
MMM, to examine the nature of electron-hole (e-h) myxim Type Il heterostructures. It is
found that the Type Il band alignment causes much eeldaseh mixing, which makes the
definition of charge in these structures non-trivial. Femnore we show how this can be
overcome when deriving the Coulomb contribution of the bandas $o be able to perform self-
consistent calculations in such structures.

Before defining the charge we need to understand theenat electron-hole coupling in
Type Il structures and how it differs from the Typease. To compare the two we look at the
spinor components of the lowest ‘electron’ subband Herttvo cases, Type | and Type Il. We
first present a calculation on an InAs/GaSb superlaitivere the band alignment is altered so as

confine the carriers in a Type | arrangement. The oiifgrdnce between this calculation and
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the later modelling performed on a Type Il InAs/GaSfucture is the band offsets between the
bulk valence bands. Hence we are simply studying the effects afimgnthe carriers in the two
different configurations; it should be noted that we aot varying the intrinsic bulk interband
coupling found in the constituent bulk materials that makéhepheterostructure. The structure
modelled has equal well and barrier widths of 75 A, andsitige band offset of 150 meV from
the GaSb to InAs valence bands (this contrasts viéh usual band offset of =560 meV in
InAs/GaSb heterostructures). The wavefunctions and bapérdiens of the confined states are
shown in Fig. 2. A single electron subband and four hobdaods (three heavy hole and one
light hole) are confined in the InAs layer. The spimmmponents of the multi-component
envelope functions for the ground electron subbiEgdare plotted in Fig. 3. The proportion of
the electron basis is high, being above 85% for keparallel values, which is very much as
expected as the Type | band alignment restricts the intertwamdirog primarily to the overlap of
the electron and hole states in the InAs layer. This is tme $gpe of coupling seen in bulk InAs
and described by Kane using 3 band k.p theory. The statesgnotined electron subband would
be rightly called electrons, and to obtain the charge one integnatesill these states and counts
them as contributing to-like charge.

The same calculation is now performed on the same steuetith the band alignment
corrected to represent that of InAs/GaShb (with tivesl conduction band lying 150 meV below
the GaSb valence band). The structure is semi-conductitgyithu an indirect band gap, the
electron states lyingnainly in the InAs layer and the hole stataainly in the GaSb layer; fig. 4
shows the wavefunctions and band dispersions for the cdnfitedes. The proportion of the
spinor bases for the ground electron subband is displayed.ib.H he electron-hole coupling is

much enhanced in the Type Il variant compared with y#geTl counterpart, the electron basis
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being restricted to between 60 % and 75 %. The mixing ismated by the light holes at loky
parallel values but there is even a large heavy lomponent at higher k-values (the
dependence on superlattice wavevector q has been desbebwe [32]). This enhanced e-h
coupling within the electron subband is due to two maatofs; firstly the energy difference
betweenEy and the bulk valence band of GaSb is small thus enhguecompling; and secondly
due to interband coupling in the InAs layer the lightehobmponent of th&, subband has a
maximum at the InAs/GaSb interface, and thus propagategbtiato the GaSb layer. Analysis
of the envelope functions of the light hole spinor comgnt shows that they have strong
components in both layers, and most importantly the component whithinAs layer is stronger
than in the Type | case, due to this propagation. Thusttbag e-h coupling is a consequence
of both Kane like bulk interband e-h coupling as seerhénTtype | structure, and also to the
extended propagation of the light hole component envelope funottosth layers.

This has important consequences when considering the taefimof charge in the
structure. For the purposes of the following discussiorspi the integration of the charge up
into four distinct contributions:

1. ‘s’ like components within the InAs layer

2. 'p’ like components within the InAs layer

3. ‘s’ like components within the GaSb layer

4. ‘p’ like components within the GaSb layer
where ‘s’ and ‘p’ refer to electron and hole like atomicdsasf we use the ‘bulk approximation’
we would integrate the-type charge as the sum of the first and second contnitsufor all
states defined as electrons, and similarlypidype charge a sum is performed over the third and

fourth contributions for all states defined as holes (thénition of electron like or hole like
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coming from a simple majority analysis of the componat@mic bases). This has obvious
advantages as the charge is calculated in the same mans@ea®imed for bulk materials, but
this neglects two facts; firstly we are neglectingatwount for the ‘s’ like components in the
GaShb layer, which are due to the natural propagatioheoftvelope functions of the electron
subbands into the barrier layer; secondly, it has beewrslabove that the ‘p’ like states in the
InAs layer are stronger in a Type Il system (comparéeldype | structures) due to interlayer light
hole coupling to electron states, which would increasec#iheulated charge density (as well as
distorting the spatial distribution of the charge in the well).

To address these problems we have redefined theinvafich we look at charge, by
considering the ‘s’ and ‘p’ like nature of the stat&s opposed to the usual electron/hole
definition. What we are able to avoid is the arbitraefirdtion of a state with only 55% ‘s’ like
atomic bases as being an ‘electron’, and instead sayhilsestate is 55% electron like and 45%
hole like (this is directly analogous to describing th&es using fuzzy set theory instead of
classical set theory [ref.33]). In the following dissio® we consider two heavily mixed states
one below the Fermi level and one above the Fermi levelthiéoformer case (below the Fermi
level) we consider the sum over the like wavefunctions and consider this as electron like
charge that is added to the potential; in the lattee tas summation is performed over tipé
like states and this adds hole like charge to the supeelgpotential. Writing this explicitly, the

electron ) and holep) like charge is given by:

n= E: Zn: fn\un(s»‘sz p= IE_:O Zn:

whereuy(s) anduy(p) represent thes* and ‘p’ like atomic Kane bases as given in Table 1. The

f,|u,(p)) dE (12)

summations are taken over all subbands, with the depead# the envelope function da

parallel included to take account of the mixing away fithe zone centre. Using this method a
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particular state only contributes electron or holerghaand not both at the same time. The
inclusion of the s-like contribution of valence band stdtethe sum for the electron density
makes up for the mixing of the valence band into the cormtuttand. The total charge transfer
from one layer to the other can then be evaluated byrigali the total charge distribution in the
structure. One problem with this method, however, is thagitires the treatment of a complete
set of all mixed states which it is difficult to achéepractically. In particular the strong electron-
light hole coupling found in the electron subbands leads lrger contribution from hole like
states than electron like states in the region above#sconduction band. As a result in a real
calculation we find that the Fermi energy is too highenergy often lying above the highest
confined heavy hole subband (the hole charge being builfrarp the strong light hole
components in the electron subbands which lie above the G&Slterdand edge). To deal with
this would require a sum over an impracticably large nurobbelancing hole states. To rectify
this simply we put a constraint on the energy window ovechvthe Fermi energy is calculated,
such that we integrate the charge between the loveedined electron level gand highest

confined hole level bl Thus Equ. 12 is modified as shown below:

n:fEEOFZn:

whereEy is defined as the lowest energy state with a tstddasis greater than 0.45, ahld is

fol Un(P»\sz (13)

f|u.(s))| dE p=["

defined as the highest energy state with a tqtabasis greater 0.5. The choice of 0.45 for
definition of the lowest lying electron state (ma&tl of 0.5) is arbitrary, but it is found that this
results in a more realistic Fermi energy positidithough we have had to return to describing a
state as being an ‘electron’ or ‘hole’, this isdis®lely for determining the calculation window,

and not to obtain the state’s contribution to tharge density. Using this method we have been
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able to successfully model the charge in the styooaupled InAs/GaSbh system as shown by the

series of examples given in the following section.

V. Applications

1. Semimetallic InAs/GaSh super lattices

In this section we concentrate on calculationsgeeréd on InAs/GaSb semimetallic
superlattices. The system is well known for theswal crossed band alignment with the InAs
conduction band lying approximately 150 meV abdwe GaSb valence band edge [30,31]. In
early modelling of this system the calculations evperformed non-self-consistently with the
band offset between the two materials artificialiered so as to fit the data. In recent years
experimental data has confirmed that the offsetliS0 meV [34], and so it seems best to
perform self-consistent calculations without adjugthe offset. The materials parameters used
in these calculations are quoted in Appendix A.

So as to compare the results from the momentutmxmechnique with those performed
using the transfer-matrix technique, we have chdeemimic the InAs/GaSb superlattice that
was presented by Altarelli [35] with an InAs layeidth of 120 A and a GaSb layer width of 80
A. The calculation is performed self-consistentighaconvergence being reached in 7 iterations,
and the number of Fourier terms used was 12. Thpedsion alongy and the superlattice
direction k, is plotted in Fig. 6. Although we are using slightlifferent band parameters,
different Hamiltonians and different techniques, e®ain similar results. We observe a small

direct energy gap of 3.9 meV lgt1vd, k;,=0.057 which compares with Altarelli’'s findings af

gap with energy 2 meV ak,=17d, k/=0.043 The valence band dispersions are slighffgrdint
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for lower-lying bands, but this is probably dueAitarelli’'s use of the spherical approximation,
and different Luttinger parameters. The influentéhe number of Fourier terms used is shown
in Table 2, which shows how the band edge solutiary, together with the carrier density.
Reasonable consistency is reached by the use d6 1@rms in this case, giving an accuracy of
order 0.1 meV.

Recent interest in this material system has cornatertt on the anticrossing between the
ground electronEp) and ground holeHH,) levels which we term the minigap [36-40]. The
calculation shows that this varies strongly witle $uperlattice wavevectgrfrom 3.9 meV at
(g=17d, k;=0.057) to 22.9 meV at£0, k;=0.067). The large change in minigap energy with th
superlattice wavevector is explained by symmetmst@ints on interband mixing in Type Il

systems [32].

2. INAS/GaSb single heter ojunctions

The study of InAs/GaSb single heterojunctions isndérest due to the unusual band
alignment which causes negative differential rasise (NDR) [41]. Using the model shown
above we can calculate the band structure of adesingterojunction at finite electric field to
show the effects on the electron and hole levelshag cross and become decoupled. Such
calculations are performed on wide layered strestwyith single layers of InAs and GaSb both
of which have a width 500 A. An external electrield is placed across the structure so as to
investigate the electron and hole states at thiet paien NDR occurs. Although the boundary
conditions used in the calculation are those feuerlattice the wide layers result in virtually no
overlap of the states in neighbouring wells and ckerthe calculation mimics a single

heterojunction. The calculation is performed selfigistently, although it should be noted that
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calculations which include both the effects of &iecfield and self-consistency cannot be
extended for more complex structures (as seen Vatér the quantum cascade structures) as
problems arise in the determination of a realisgami level.

An example of the results for such a calculatia slrown in Fig. 7, for a structure with
an electric field of 4MVrit across the 1000 A structure. The calculation veafopmed with 15
Fourier terms, and takes into account the chargesfer across the interface using the self-
consistent routine outlined above. The band bendihghe InAs/GaSb interface is seen to
resemble that expected for a single heterojundd@h In the following we concentrate on the
confinement of the states at either side of therbginction interface, the states being confined
by a combination of the electric potential across bulk materials and the self-consistent
Coulomb potential of the occupied states. For thecgire shown in Fig. 7 a negative band gap
of 30.9 meV exists a0 with the resulting charge transfer between e layers resulting in
n andp charge densities of 260" cm? As in the superlattice calculation outlined abave
small anticrossing occurs close to the Fermi |ld&etiveen the ground electron and hole states.
The minigap energy however is much smaller (1.7 noevhpared with 22.9 meV for the
superlattice structure) and shows how the interlayipling strongly decreases with only a
single interface present.

To observe the effects of electric field on the fawment of the states, we have
performed a series of calculations at a numbernféérdnt electric field values. The results are
shown in Fig. 8. At the lowest electric field valw# 1.5 MVmi* the structure is shown to have a
negative band gap of 49 meV, the gap decreasimgpgyr with increasing electric field. At

electric fields above 8MV/m the bands are decoupletla small band gap semiconductor exists.
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In this case charge transfer no longer takes dadethe calculation can only be performed non-

self-consistently.

3. Semimetallic InAs/GaSh heterostructures at finite magnetic field

There has been much recent interest both expetatheand theoretically in the

cyclotron resonance of a single InAs layer clathwegions of GaSb barrier material [43-46].
The amplitude and linewidth of the cyclotron resm®is seen to oscillate with field and has
been recently attributed to the minigap-like amigsing between electron and hole states [45,46].
Modelling of InAs/GaSb structures at finite magaoefield is thus of current interest to
understand this phenomena. In this paper we presemtsets of calculations firstly on
InNAs/GaSb superlattices, and secondly extending rtluglelling performed on InAs/GaShb
heterojunctions seen in the previous section ttefielectric and magnetic field.

Fig. 9 shows the energies of the Landau levels fuperlattice consisting of 200A InAs
and 50A GaSb layers gt0 andg=1vd. The calculation has been performed with the aptiom
that the system has a very small neype doping (1 x 1bcmi?), with the result that at the
highest fields the Fermi level follows the lowestotron Landau level. The results show that
there is a large and clearly visible minigap couplfor theg=0 states, the coupling occurring
between electron and hole levels with the samé &mtgular momentum quantum number (n),
but for theg=1vd states the coupling is substantially reduced.dth lzasesg=0 andg=1vd) as
the levels of the electrons and holes cross edwdr tltere are non-linear increases in the energy
levels with magnetic field due to the changes te $lelf-consistent potential caused by the
change in the number of occupied levels. The graés show the position of the Fermi level

and the electron carrier density which show moeanty the oscillatory nature of the energies.
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For magnetic fields above 30 T there is a steadyation in carrier density as the last few levels
begin to uncross, and by 50 T the carrier dens/fallen to essentially zero. In the region 30 -
50 T the levels vary relatively slowly with field #ghe change in the self-consistent potential acts
to balance the change in density.

Figure 10 shows the results of a calculation feingle heterojunction of InAs with GaSb
subject to an electric field of 5 MVir(which is modelled as a superlattice with a lgsgtential
offset between thick adjacent layers as in the ipusv section). In this case there is no
superlattice coupling along the growth directiom dimerefore no dispersion for the momentum
along the growth direction. As a result the dgnasftstates is much more singular and therefore
the oscillatory nature of both the energy leveld #re carrier density has become much more
pronounced. As there is only one interface in #gtrsicture the magnitude of the anticrossing

features is however much reduced.

4, Quantum cascade structures

There has been much recent interest in the designfabrication of quantum
cascade devices, emitting infrared radiation inréggon 5 — 12am. Quantum cascade structures
contain a staircase of quantum wells where theciege electrons are recycled, enabling the
guantum efficiency (the number of photons emittedgdectron) to exceed 100% [47-48]. In this
paper we have used to the momentum matrix techrimueodel InAs/GaSb quantum cascade
structures, with the emphasis on using the unusaiatl alignment of the system to reduce the
complexity of the structures. We present the idemimigap assisted tunnelling in InAs/GaSh

guantum cascade structures, and propose cascaidedenthout injector and collector regions.
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Careful control of the band structure means thatcturiers from one active layer tunnel straight
into the next active region by means of the stromgpling between electrons and holes.

The proposed structure is essentially an InAs/Gsigierlattice with the layer widths and
electric field across the device carefully contdliso as to introduce strong electron-hole
coupling between the energy levels in adjacent naddée Fig. 11 shows the energy levels for
such a superlattice with electric field along tmevgh direction, calculated usirgp modelling.
The calculation is different from the modelling feemed in the previous examples. The
‘superlattice unit cell’, which the superlatticeoBh condition operates over, contains 5 periods
each containing an InAs and GaSb layer. This iessary to observe cascade effects over a
number of periods. The inclusion of electric fieddsimple and is a linear function added onto
the potential profile of the bands. The momentumtrimatechnique is easily able to
accommodate this variation of potential and in msseno changes are made to the model used.
The calculation is not performed self-consisteasycarriers would accumulate at the minimum
of the potential profile.

The wavefunctions are plotted in Fig. 11, for aeslgitice with an InAs well width of 160
A and GaSb barrier width of 80 A. An electric fietff 120 meV is placed across each
superlattice period (one layer of InAs and GaSlhg active transition is intersubband in nature
between theE; and Ep subbands in the InAs wells (denoted by an arroMie key to the
structure is aligning th&, subband in well A with the ground hole subbandhe barrier (B).
This is intended to ensure that the electrons fiytan escape from the well quickly. The
structure is also designed such that the grounel suddband in the barrier (B) is aligned with the
subbandE; in well C, which forms the initial state of thextective region. The structure relies

on strong interlayer coupling between the statethendifferent layers, so as to transfer the
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electrons from one active region to the next. Ftheninitial calculation it can be seen that strong
wavefunction overlap does exist between the fitatkesEy) in well A and the initial stateEf) in
well C. This coupling is enhanced further by themog of the electron levels to the heavy hole
subband in the barrier material. The electron-lcolgpling is strongly enhanced by the in-plane
momentum which can be seen in Fig. 11b where thdewel is seen to anticross strongly with

both of the electron levels over a range of onimn&v'.

V. Conclusions

In this paper we have demonstrated the use ontleenentum matrix technique’ which is
an extremely flexible approach to calculating thad structure of heterostructures. Based on the
standard envelope function approach of kiyeformalism, the method builds on earlier work
[21] to solve the band structure of semiconducetetostructures ik-space thus avoiding the
problems associated with spurious solutions foumdransfer matrix techniques. We have
described a self-consistent routine which is abledcount for strong electron-hole coupling
between the states and thus enables us to moderbgap heterostructures such as InAs/GaSb.
This technique easily enables a wide variety ofpprbes to be modelled including: band
bending, doping, electric fields, interface chargssain, graded composition and interlayer

coupling.
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TABLES
Table 1: The Kane basis states used to describe the buld baucture. The column
labelled ‘State’ indicates the nature of the basmction when calculating the charge density in

strongly mixed bands.

3.m,) BASIS FUNCTION STATE | ENERGY | BAND
n U, (r) sorp =
5.55) | |s1) Uy (S) 0 Conduction
7| Slxo)siv) u,(p) ‘g, | HeavyHole
%5 | glx1)=ivi)eazy)) u,(p) -E, | Light Hole
%) | Flx)-iva)-zy) Us(P) “E-4 | Spin-Orbit
= 8) | |sy) u,(s) 0 Conduction
|%,~ %) f(\xQ—i\YQ) Us (p) - E Heavy Hole
1%.7) | Elx+ive)-2z1)) Us(p) “E, | Light Hole
|%.%) Téqx iy )]z 1)) u,(p) “E,-A | Spin-Orbit

Table 2. The k=0 solutions for a 120/88 InAs/GaSb superlattice calculated using

different numbers of Fourier Terms.

Fourier terms Eo HH, Ee Carrier density
8 97.45 131.07 125.94 2.69
12 97.56 131.02 125.92 2.67
16 97 .57 130.86 125.84 2.66
20 97 .57 130.88 125.85 2.66
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APPENDIX A

Material parameters used in the calculations fisrwork are given in the table below:

Parameter InAs GaSb
Eg 418 810
Delta 380 775
Gammal 2.06 4.26
Gamma?2 -0.36 0.18
Gamma3 04 1.48
F -0.028 -0.024
Kappa -1.17 -1.43
Kane 22.2 24.4
a 6.0584 6.0954
Me 0.023 0.042
Mhh 0.41 0.28
Min 0.025 0.045
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FIGURE CAPTIONS

Figure 1. A schematic diagram showing a simple A-B-A-B slgtéice. The distances, d, and

d referred to in the text are shown.

Figure 2: The results of a k.p calculation performed on ap&y’ InAs/GaSb structure with
equal well and barrier widths of 75 A. The plot te left shows the spatial variation of the
potentials and confined wavefunctions, the righhchglot showing the dispersion aloikg

parallel. The wavefunctions shown are a sum ostheres of the spinor components.

Figure3: The proportion of the electron, heavy hole, lightehand spin orbit basis states in the

ground electron subband for a “Type I” InAs/GaSb.

Figure 4. The results of a k.p calculation performed on aveotional Type Il InAs/GaSh
structure with equal well and barrier widths of &5 The plot on the left shows the spatial
variation of the potentials and confined wavefumtsi, the right hand plot showing the

dispersion along-parallel.

Figure5: The proportion of the electron, heavy hole, lightehand spin orbit basis states in the

ground electron subband for a conventional TygeAk/GaSb structure.
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Figure 6: The dispersion relation ik-space of the band structure of a semimetallic IGASb
superlattice, mimicking the results seen by Altar&he notation in brackets refers to the points

in k-space Ky, ky, q).

Figure 7: The band edge potential and wavefunctions of th#iced states of a InAs/GaSb
heterojunction calculated using the momentum magochnique. The electric field across the
structure is 4MVrit. a). The plot shows the wavefunctions of the awi electron and hole
states in the InAs and GaSb layers respectivelg Whvefunctions shown are a sum of the
squares of the spinor components. The dashedrémessent the conduction and valence bands
of the bulk materials and the dotted line is thinsic Fermi energy of the structure. b). The

dispersion of the heterojunction state&-space.

Figure 8: The results of a series of calculations performadirAs/GaSb heterojunctions at
differing electric fields. a). The zone centre gmes of the electron (squares), heavy hole
(circles) and light hole (triangles) confined stabé the heterojunction at differing electric figld
Below electric field values of 9MVihthe calculations are performed self-consistersthove
this value the structure resembles a small bandsgapconductor and no charge transfer takes
place. b). The self-consistent carrier density d@snation of electric field. The gradient of the
plot is shown to change & (3MVm™) andE, (8MVm™) become confined above the highest

heavy hole level.

Figure 9: The energy levels of an InAs/GaSb superlattice0&ZB0A) are shown at finite

magnetic field orientated parallel to the growtmedtion. The electron levels are shown as
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crosses and the hole levels as squares with thercdensity indicated by the dashed line. a): the

states at q=0. b): the states atifjk=

Figure 10: The energy levels of an InAs/GaShb heterojunctibfirgte electric and magnetic

field.

Figure 11: An example of the use of the momentum matrix tepieto model quantum cascade
structures. a). The wavefunctions of the confinktteon and hole states are plotted kat0,
g=0). The wavefunctions shown are a sum of the sguaf the spinor components. The dotted
lines show the spatial variation of the InAs andSGaonduction and valence bands, and the
arrows mark the radiative intersubband transition. The dispersion of the states alokg

showing the extent of the interlayer coupling.
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