Electronic Properties of Solids R.J. Nicholas			
Electronic Properties:	 Metals Semiconductors Insulators Paramagnets Diamagnets Ferromagnets Superconductors 		
Combination of :	Crystal Structure Atomic Structure		

Free electron theory of metals

- Metals are good conductors (both electrical and thermal)
- Electronic heat capacity has an additional (temperature dependent) contribution from the electrons.
- Why are some materials metals and others not?

Simple approximation: treat electrons as free to move within the crystal

Free electron theory of metals

- Alkali metals (K, Na, Rb) and Noble metals (Cu, Ag, Au) have filled shell + 1 outer s-electron.
- Atomic s-electrons are *delocalised* due to overlap of outer orbits.
- Crystal looks like positive ion cores of charge +e embedded in a sea of conduction electrons
- Conduction electrons can interact with each other and ion cores but these interactions are weak because:

(1) Periodic crystal potential (ion cores) is orthogonal to conduction electrons - they are eigenstates of total Hamiltonian e.g. for Na conduct. electrons are 3s states, but cores are n=1 and n=2 atomic orbitals.

(2) Electron-electron scattering is suppressed by Pauli exclusion principle.

Assumptions:

- (i) ions are static adiabatic approx.
- (ii) electrons are independent do not interact.
- (iii) model interactions with ion cores by using an "effective mass" m*
- (iv) free electrons so we usually put $m^* = m_e$

Free Electron Model

Put free electrons into a very wide potential well the same size as the crystal i.e. they are 'de-localised'

Free electron properties

Free electron Han only kinetic end	niltonian has ergy operator:	$E\psi = -\frac{\hbar^2}{2m}\frac{\partial^2\psi}{\partial x^2}$
Free electrons are	plane waves	$\psi = A e^{\pm ikx}$
with:		
Momentum:	Energy:	Group velocity:
2	- 2 - 2 - 2 - 2 - 2	

Add a second piece of crystal the same size: The properties must be the same.

Density of states

Calculate allowed values of k.	$\psi(x) = \psi(x+L)$
Use periodic (Born-von Karman)	$\therefore e^{ikx} = e^{ik(x+L)}$
boundary conditions:	$\therefore e^{ikL} = 1$
L = size of crystal	$\therefore k = 0, \pm \frac{2\pi}{L}, \pm \frac{4\pi}{L}$
	$\therefore \delta k = \frac{2\pi}{L}$

Density of allowed states in reciprocal (k-) space is:

$$\frac{\Delta K}{\delta k} \text{ in } 1-D \quad \text{or} \quad \frac{\Delta V_K}{\delta k^3} \text{ in } 3-D \quad \text{x 2 for spin states}$$

Fermi Energy

Electrons are Fermions	$N = \int_{0}^{\infty} g(\varepsilon) f_{F-D}(\varepsilon) d\varepsilon$
at $T = 0$	$N = \int_{0}^{\mu} g(\varepsilon) d\varepsilon$
	$n = \frac{N}{V} = \frac{8\pi}{3} \left(\frac{2mE_F}{h^2}\right)^{\frac{3}{2}}$
t at T = 0 is known as the Fermi Energy, E _F	$E_F = \left(\frac{3N}{8\pi V}\right)^{2/3} \frac{h^2}{2m}$

Typical value for E_F e.g. Sodium (monatomic)

crystal structure: b.c.c. crystal basis: single Na atom lattice points per conventional (cubic) unit cell: 2 conduction electrons per unit cell 2 \therefore electrons per lattice point = 1

lattice constant (cube side) = a = 0.423 nm \therefore density of electrons $n = N/V = 2/a^3 = 2.6 \text{ x } 10^{28} \text{ m}^{-3}$ $\therefore E_F = 3.2 \text{ eV}$

Fermi Temperature T_F ? $k_B T_F = E_F$ $\therefore T_F = 24,000 \text{ K}$

Finite Temperatures and Heat Capacity

Fermi-Dirac distribution function $f_{F-D} = 1/(e^{E-\mu/k_BT} + 1)$ electrons are excited by an energy ~ k_BT Number of electrons is $\approx k_BT g(E_F)$ $\therefore \Delta E \approx k_B^2T^2 g(E_F)$ $\therefore C_V = \Delta E / \Delta T \approx 2k_B^2T g(E_F)$

Previously
we have
$$n = AE_F^{3/2}$$

 $\therefore \ln n = \frac{3}{2} \ln E + const.$
 $\therefore \frac{dn}{n} = \frac{3}{2} \frac{dE}{E}$
 $\frac{dn}{dE} = \frac{3}{2} \frac{n}{E_F} = g(E_F)$
 $\therefore C_v = 3nk_B \frac{k_BT}{E_F} = 3nk_B \frac{T}{T_F}$

: Heat Capacity is:

- (i) less than classical value by factor $\sim k_B T/E_F$
- (ii) proportional to $g(E_F)$

Is this significant?

Rigorous derivation

Magnetic susceptibility

• Susceptibility for a spin ¹/₂ particle is:

$$\chi = \frac{\mu_B^2 \mu_0}{kT} / \text{electron}$$

This is much bigger than is found experimentally
Why?

Pauli paramagnetism

Separate density of states for spin up and spin down, shifted in energy by $\pm \frac{1}{2}g\mu_B B$ (g=2) Imbalance of electron moments Δn

 $\Delta n = \frac{1}{2} g(\epsilon_{\rm F}) \times 2\mu_{\rm B} B$

giving a magnetization M

$$M = \mu_B \Delta n = \mu_B^2 g(\varepsilon_F) B$$

and a susceptibility

$$\chi = M/H = \mu_0 \ \mu_B^2 \ g(\epsilon_F) = 3n\mu_0 \ \mu_B^2 \ /2\epsilon_F$$

k-space picture and the Fermi Surface

T=0 states filled up to
$$E_F$$
 $\therefore \frac{\hbar^2 k^2}{2m} = E_F$

Map of filled states in k-space = Fermi surface $\therefore k_F = \sqrt{\frac{2mE_F}{\hbar^2}}$

or we can write:

$$N = 2 \times \frac{4\pi}{3} \frac{k_F^3}{\left(\frac{2\pi}{L}\right)^3}$$

$$\therefore k_F^3 = \frac{3\pi^2 N}{V}$$

k-space picture and the Fermi Surface

How big is Fermi surface/sphere compared to Brillouin Zone?

Simple cubic structure

volume of Brillouin Zone = $(2\pi/a)^3$

electron density $n = 1/a^3$

volume of Fermi sphere = $4\pi k_F^3/3 = 4\pi^3/a^3$

= half of one B.Z.

Electron Transport - Electrical Conductivity

Equation of motion: Force = rate of change of momentum

$$\hbar \frac{\partial k}{\partial t} = -e \left(\mathbf{E} + \mathbf{B} \times \mathbf{v} \right)$$

Apply electric field - electrons are accelerated to a steady state with a drift velocity v_d - momentum is lost by scattering with an average momentum relaxation time τ

What happens in k-space?

All electrons in k-space are accelerated by electric field:

$$\hbar \, \delta k = F \, \delta t = - e E \, \delta t$$

On average all electrons shifted by: $\delta k = -\frac{eE\tau}{\hbar}$

Fermi sphere is shifted in k-space by $\delta k \ll k_F$

 \therefore To relax electron momentum k must be changed by ~ k_F

Scattering occurs at E_F

: we need phonons with large value of k. But phonon energy is small so only a small fraction of electrons k_BT/ϵ_F can be scattered

Scattering processes

Basic Principle: Scattering occurs because of deviations from perfect crystal arrangement

Electron scattering mechanisms:

- (i) thermal vibrations i.e. phonons (vibrations of the atoms are a deviation from perfect crystal structure)
- (ii) presence of impurities charged impurities are very important - scattering is by Coulomb force i.e. Rutherford scattering.

Matthiessen's rule: Scattering rates $(1/\tau)$ add

$$\therefore \rho = \frac{m}{ne^2} \sum \frac{1}{\tau} = \rho_T + \rho_i$$

Mean free path (λ):

electrons are moving with Fermi velocity v_F

 $\therefore \quad \lambda = v_F \tau \quad (NOT \quad v_d \tau)$

Low temperature mean free paths can be <u>very</u> long as electrons are only scattered by impurities

Hall Effect

- In a magnetic Field **B** the electron experiences a force perpendicular to its velocity.
- A current **j** causes a build up of charge at the edges which generates an Electric field **E** which balances the Lorentz force

$$(-e) (\mathbf{E} + \mathbf{v}_d \times \mathbf{B})_y = 0; \quad E_y = (v_d)_x B_z$$

Hall Effect

In a magnetic Field **B** the electron experiences a force perpendicular to its velocity.

A current **j** causes a build up of charge at the edges which generates an Electric field **E** which balances the Lorentz force

Balance of forces:

$$(-e) (\mathbf{E} + \mathbf{v}_d \times \mathbf{B})_y = 0; \quad E_y = (v_d)_x B_z$$

The Hall coefficient R_H is:

$$R_{H} = \frac{E_{y}}{j_{x}B_{z}}$$

$$j_x = n(-e) v_d \implies R_H = -\frac{1}{ne}$$

Negative sign is sign of the charge on the electron

Metal	Charge/Atom (u	Group	
	Hall Expt.	FE Theory	
Lithium	-0.79	-1	Ι
Sodium	-1.13	-1	Ι
Potassium	-1.05	-1	Ι
Copper	-1.36	-1	IB
Silver	-1.18	-1	IB
Gold	-1.47	-1	IB
Beryllium	+0.1	-2	II
Magnesium	-0.88	-2	II
Calcium	-0.76	-2	II
Zinc	+0.75	-2	IIB
Cadmium	+1.2	-2	IIB
Aluminium	+1.0	-3	III
Indium	+1.0	-3	III

Thermal conductivity

In metals heat is mainly carried by the electrons Simple kinetic theory formula for thermal conductivity K:

$$K = \frac{1}{_{3}C\lambda v_{F}} [C = \frac{\pi^{2}}{_{3}B^{2}T} g(E_{F}) = \frac{\pi^{2}}{_{2}nk_{B}k_{B}T/E_{F}}]$$

= $\frac{\pi^{2}}{_{6}\lambda v_{F}nk_{B}k_{B}T/E_{F}} [\lambda = v_{F}\tau; E_{F} = \frac{1}{_{2}mv_{F}^{2}}]$
= $\frac{\pi^{2}}{_{3}m}nk_{B}^{2}\tau T$

Scattering processes

- Low temperatures: defects, τ independent of T
- Intermediate temp. : Low Temp phonons Debye model $\tau \propto T^{\text{-}3}$
- High temperatures: 'classical' phonons $\tau \propto T^{-1}$

Wiedeman-Franz ratio

Electrical and Thermal conductivities of electrons are both proportional to the relaxation time τ

Taking the ratio of the two should make this cancel so if we define the Lorenz number as $L = K/(\sigma T)$ we have the

Wiedeman-Franz Law:
$$L = \frac{K}{\sigma T} = \frac{\pi^2 k_B^2}{3e^2}$$

Predicted value is absolute and the same for all metals. Works well at high and low temps, - breaks down in 'Debye' region where energy and charge scattering are different

Successes and Failures of Free Electron Model

Successes:

- Temperature dependence of Heat Capacity
- paramagnetic (Pauli) susceptibility
- Ratio of thermal and electrical conductivities (Lorentz number)
- Magnitudes of heat capacities and Hall effect in simple metals

Failures:

- · Heat capacities and Hall effect of many metals are wrong
- Hall effect can be **positive**
- Does not explain why mean free paths can be so long
- Does not explain why some materials are metals, some insulators and some are semiconductors

Nearly Free Electron Approximation

Use a travelling wavefunction for an electron, e ikx , with kinetic energy $\hbar^2 k^2/2m$

Assume that this is <u>Bragg scattered</u> by the wavevector $G=2\pi/a$ to give a second wave $e^{i(k-G)x}$ with energy $\hbar^2(k-G)^2/2m$

Crystal potential is periodic in real space. Therefore we can Fourier Transform the potential so that:

$$V(x) = \sum_{G} V_{G} \exp(iGx)$$

For a schematic solution we calculate what happens for a single Fourier component V_G so $V(x) = V_G(e^{iGx} + e^{-iGx})$

Nearly Free Electron Approximation

Use a travelling wavefunction for an electron, e ^{ikx}, with kinetic

Formally what we are doing is to solve the Hamiltonian form of Schrödinger equation

$$\mathbf{H} \boldsymbol{\psi} = \mathbf{E} \boldsymbol{\psi}$$

where ψ are the two travelling wave solutions. Expanding gives:

$$\begin{pmatrix} H_{11} - \lambda & H_{12} \\ H_{21} & H_{22} - \lambda \end{pmatrix} \begin{pmatrix} e^{ikx} \\ e^{i(k-G)x} \end{pmatrix} = (E - \lambda) \begin{pmatrix} e^{ikx} \\ e^{i(k-G)x} \end{pmatrix}$$
$$H_{11} = \left\langle \psi_1^* \middle| -\frac{\hbar^2}{2m} \frac{\partial^2}{\partial x^2} \middle| \psi_1 \right\rangle = \frac{\hbar^2 k^2}{2m}, \quad H_{22} = \frac{\hbar^2 (k-G)^2}{2m}$$
$$H_{12} = \left\langle \psi_1^* \middle| V(x) \middle| \psi_2 \right\rangle = V_G$$