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Electronic Properties of Solids
R.J. Nicholas

Electronic Properties: • Metals
• Semiconductors
• Insulators
• Paramagnets
• Diamagnets
• Ferromagnets
• Superconductors

Combination of : Crystal Structure

Atomic Structure

Free electron theory of metals

• Metals are good conductors (both electrical and thermal)   

• Electronic heat capacity has an additional (temperature 

dependent) contribution from the electrons.

• Why are some materials metals and others not?

Simple approximation: treat electrons as free 
to move within the crystal
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Free electron theory of metals

• Alkali metals (K, Na, Rb) and Noble metals (Cu, Ag, 
Au) have filled shell + 1 outer s-electron.   

• Atomic s-electrons are delocalised due to overlap of 
outer orbits.

• Crystal looks like positive ion cores of charge +e 
embedded in a sea of conduction electrons

• Conduction electrons can interact with each other and 
ion cores but these interactions are weak because:

(1) Periodic crystal potential (ion cores) is orthogonal to conduction 
electrons - they are eigenstates of total Hamiltonian e.g. for Na conduct. 
electrons are 3s states, but cores are n=1 and n=2 atomic orbitals.

(2) Electron-electron scattering is suppressed by Pauli exclusion 
principle.

(i)  ions are static - adiabatic approx.

(ii) electrons are independent - do not interact.  

(iii) model interactions with ion cores by using an “effective mass” m*

(iv) free electrons so we usually put m* = me

Assumptions:
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Free Electron Model

Put free electrons into a very wide potential well the 
same size as the crystal i.e. they are 'de-localised' 

L

Free electron properties

Free electron Hamiltonian has 
only kinetic energy operator:

Free electrons are plane waves
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Free Electron Model – Periodic 
boundary conditions

Add a second piece of crystal the same size:

The properties must be the same. 
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Density of states

Calculate allowed values of k.  
Use periodic (Born-von Karman) 

boundary conditions:

Density of allowed states in reciprocal (k-) space is:
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States have energies
ε to ε + dε
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Density of states (2)

Fermi Energy

Electrons are Fermions

μ at T = 0 is known as the
Fermi Energy,  EF
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Typical value for EF    e.g.  Sodium (monatomic)

crystal structure:  b.c.c. crystal basis:   single Na atom
lattice points per conventional (cubic) unit cell:    2
conduction electrons per  unit cell 2

∴ electrons per lattice point  =  1

lattice constant (cube side)  =  a  = 0.423 nm
∴ density of electrons   n = N/V=  2/a3 =  2.6 x 1028 m-3

∴ EF =  3.2 eV

Fermi Temperature TF?     kBTF =  EF ∴ TF =  24,000 K

Finite Temperatures and Heat Capacity

Fermi-Dirac distribution function   fF-D = 1/(eE-μ/kBT + 1)

electrons are excited by an energy ~ kBT

Number of electrons is ≈ kBT g(EF)

∴ ΔE  ≈ kB
2T2 g(EF) 

∴ CV = ΔE/ ΔT  ≈ 2kB
2T g(EF)



Metals – HT10 – RJ Nicholas 7

B
v B B

F F

3ln ln .2
3
2
3 ( )
2

k T TC 3nk     3nk  
E T

F
F

n E const

dn dE
n E

dn n g E
dE E

∴ = +

∴ =

= =

∴ = =

Previously 

we have n = AEF
3/2

∴ Heat Capacity is:

(i)   less than classical value by factor ~kBT/EF

(ii)  proportional to g(EF)

Is this significant?

Room 
Temperature

Low 
Temperature

Lattice Electrons

C/T  =  βT2 +   γ

Debye term free electron term

π2/2 nkB (kBT/EF)12π4/5 nat.kB (T/ΘD)3

π2/2 nkB (kBT/EF)3nat.kB
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Magnetic susceptibility

• Susceptibility for a spin ½ particle is:

• This is much bigger than is found experimentally  
- Why?
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Pauli paramagnetism

Separate density of states for spin up and spin down, 
shifted in energy by ± ½gμBB (g=2)

Imbalance of electron moments Δn

Δn = ½ g(εF) × 2μBB

giving a magnetization M

M = μB Δn = μB
2 g(εF) B

and a susceptibility

χ = M/H = μ0 μB
2 g(εF) = 3nμ0 μB

2 /2εF

k-space picture and the Fermi Surface

T=0 states filled up to EF

Map of filled states in k-space
=  Fermi surface

or we can write:
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k-space picture and the Fermi Surface

T=0 states filled up to EF
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How big is Fermi surface/sphere compared to 
Brillouin Zone?

Simple cubic structure

volume of Brillouin Zone = (2π/a)3

electron density n = 1/a3

volume of Fermi sphere = 4πkF
3/3 = 4π3/a3

= half of one B.Z.
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Electron Transport - Electrical Conductivity

Equation of motion:    Force = rate of change of momentum

Apply electric field - electrons are accelerated to a steady 
state with a drift velocity vd - momentum is lost by 
scattering with an average momentum relaxation time τ
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μ is mobility with:
vd = μE

What happens in k-space?

All electrons in k-space are 
accelerated by electric field: 

On average all electrons

shifted by:
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What happens in k-space?

All electrons in k-space are 
accelerated by electric field: 

On average all electrons shifted by:

Fermi sphere is shifted in k-space by δk << kF

∴ To relax electron momentum k must be changed by ~ kF

Scattering occurs at EF

∴ we need phonons with large value of k.  But phonon energy is small 
so only a small fraction of electrons kBT/εF can be scattered
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Scattering processes

Electron scattering mechanisms:

(i) thermal vibrations i.e. phonons  (vibrations of the atoms 
are a deviation from perfect crystal structure)

(ii) presence of impurities - charged impurities are very 
important - scattering is by Coulomb force i.e. 
Rutherford scattering.

Basic Principle: Scattering occurs because of deviations 
from perfect crystal arrangement
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Matthiessen’s rule:       Scattering rates (1/τ) add
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Mean free path (λ):
electrons are moving with Fermi velocity vF

∴ )( ττλ dF vNOTv=

Low temperature mean free paths can be very long as 
electrons are only scattered by impurities

Hall Effect

In a magnetic Field B the electron experiences 
a force perpendicular to its velocity.  

A current j causes a build up of charge at the 
edges which generates an Electric field E
which balances the Lorentz force 

zxdyyd BvEe )(;0)()( ==×+− BvE
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Hall Effect In a magnetic Field B the electron 
experiences a force perpendicular to its 
velocity.  

A current j causes a build up of charge at 
the edges which generates an Electric 
field E which balances the Lorentz force Balance of forces:

The Hall coefficient RH is:

zxdyyd BvEe )(;0)()( ==×+− BvE
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Negative sign is sign of the charge on the electron

III-3+1.0Indium
III-3+1.0Aluminium
IIB-2+1.2Cadmium
IIB-2+0.75Zinc
II-2-0.76Calcium
II-2-0.88Magnesium
II-2+0.1Beryllium
IB-1-1.47Gold
IB-1-1.18Silver
IB-1-1.36Copper
I-1-1.05Potassium
I-1-1.13Sodium
I-1-0.79Lithium

FE TheoryHall Expt.

GroupCharge/Atom (units of electron charge e)Metal



Metals – HT10 – RJ Nicholas 15

Thermal conductivity
In metals heat is mainly carried by the electrons
Simple kinetic theory formula for thermal conductivity K:

K  = 1/3CλvF [C  = π2/3 kB
2T g(EF)   = π2/2 nkB kBT/EF]

= π2/6 λvF nkB kBT/EF                    [λ =  vFτ ;      EF = ½mvF
2] 

= π2/3m n kB
2 τ T

• Low temperatures: defects, τ independent of T
• Intermediate temp. : Low Temp phonons - Debye 

model τ ∝ T-3

• High temperatures: ‘classical’ phonons τ ∝ T-1

Scattering processes

Wiedeman-Franz ratio

Electrical and Thermal conductivities of electrons are both 
proportional to the relaxation time τ

Taking the ratio of the two should make this cancel so if we 
define the Lorenz number as L = K/(σT) we have the

Wiedeman-Franz Law:

Predicted value is absolute and the same for all metals.

Works well at high and low temps, - breaks down in ‘Debye’
region where energy and charge scattering are different
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Successes and Failures of Free Electron 
Model

• Temperature dependence of Heat Capacity
• paramagnetic (Pauli) susceptibility
• Ratio of thermal and electrical conductivities (Lorentz number)
• Magnitudes of heat capacities and Hall effect in simple metals

• Heat capacities and Hall effect of many metals are wrong
• Hall effect can be positive
• Does not explain why mean free paths can be so long
• Does not explain why some materials are metals, some insulators 

and some are semiconductors

Successes:

Failures:

Nearly Free Electron Approximation
Use a travelling wavefunction for an electron, e ikx, with kinetic 

energy 2k2/2m

Assume that this is Bragg scattered by the wavevector G=2π/a to 
give a second wave e i(k-G)x with energy 2(k-G)2/2m

Crystal potential is periodic in real space.  Therefore we can 
Fourier Transform the potential so that:

For a schematic solution we calculate what happens for a 
single Fourier component VG so V(x) = VG(eiGx + e-iGx)

)(exp)( iGxVxV
G G∑=
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Nearly Free Electron Approximation
Use a travelling wavefunction for an electron, e ikx, with kinetic 

energy 2k2/2m

Δk = 2|k|sinθ
= 4π/λ sinθ = 2π/d

Δk = G = ha* + kb* +lc*

With d =
2 2 2

a
h k l+ +

Bragg scattering

2dsin  = θ λ

d

2θ

θ

Formally what we are doing is to solve the Hamiltonian form of 
Schrödinger equation

H ψ =  E ψ
where ψ are the two travelling wave solutions.  Expanding gives:
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