Band Theory

Need to take account of two main factorsin understanding
the electronic properties of crystals

N

Atomic structure of atoms Periodic crystal potential
)

Tight binding model Nearly free electron approx.
Start from isolated atoms Start with free electrons
and look at interaction as and look at scattering by
wavefunctions overlap the crystal potential
Works well for insulators Good for describing the
and semiconductors properties of metals and

their Fermi surfaces

Nearly Free Electron Approximation

Use atravelling wavefunction for an electron, e ¥, with kinetic
energy 7°k?2m

Assume that this is Bragg scattered by the wavevector G=2n/ato
give a second wave e' k-G with energy 73(k-G)4/2m

Crystal potential isperiodicin rea space. Therefore we can
Fourier Transform the potential so that:

V() = > Vs exp(iGx)

For a schematic solution we cal cul ate what happens for a
single Fourier component Vg so V(x) = V(€% + &1¢X)
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Formally what we are doing is to solve the Hamiltonian form of
Schrodinger equation

Hy=Ey
where i are the two travelling wave solutions. Expanding gives:

(Hn—ﬂ H., j .eikx =(E—/1) .e”‘x
H21 H22 -1 e|(k—G)x e|(k—G)><

Hy, = <W1*

Hy, = <'/’1*‘V(X)‘ Wz> = Ve

h? 92
" 2mox®

_ PR #Pk=G)
! om = * 2m

2 2
New Schrédinger equationis: Hy = _5_% sz + V(X)y =Ey
m oX

if —a% H _hzkz ikx V. @l (k£G)x
w=e", y/——zme + V, €

so €k isno longer a solution.

.. Choose a combination of two waves: A, g + B, .gkx,
Can then solve the Schrodinger EQ. by writing:
21,2 2112
2m 2m
=E (Ae™ + BEYY), with k'=k-G

Hy Bekx +VG[Aei(kiG) + Bei(k‘J_rG)]
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To simplify thiswe multiply by e’k (and again by e'k)
and integrate over all space using

L L
%je‘qx dx =1whenq=0, andjein dx=0when g0
0 0

Gives apair of simultaneous equations:

21,2
Ea= KA, v.B
2m
20, _ ()2
2m
Solve determinant: hz(ff )2
@ _E V,
he Brillouin Z o =0
at the Brillouin Zone
wley)
boundary V, a _g
K'|= k- G| = n/a 2m

(using G = 2n/a)

A

Giving two solutions: ——=— * V;

With eigenstates W = gmax 4 gi(n/ax
l.e.  Standing waves cosd and sin®
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Around k = /a- hz(%)z p2g? hz(%)z
m o mV

solutionsare:  g(+) = —44— + V. +
2 2m
E
 Around the band gap the
solutions are parabolae -
almost mirror images A ;
)
At the band edge the states
are stationary. i.e. zero
velocity / \l
\ LA
 Inverted paraboladescribes| | /7 N T
the behaviour of holes 2[n r:\g O/TL o
“a g a o
G=ak

Generalise to include scattering by all
possible reciprocal lattice vectors

Crystal potentid is: V(x) = ZGVG exp (iIGx)
travelling wave €k« is scattered to give:
w =Aekk+Bekex+ CekGxt
whichis. = e (uy + uge'®+ ug e'Cx+ ..)
p = ey x) = eulx +a)
u.(x) iscalled a Bloch function, and it has the same
periodicity as the crystal lattice (from Fourier series)
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Bloch’s Theorem

For any periodic potential defined by V(r) =V(r + R)
the solutions to the Schrédinger equation

(-4 vevinlwe) = Ev)

are
(1) = exp(ikr)uc(r)

where u,(r) = u(r +R)

Free electron states have u,(r) = constant
In real solids u,(r) looks like the atomic wavefuntions

Proof of Bloch’s Theorem
substituting R+r' = r
{—h%mV2+V(R+r')} w(R+r) = Ey(R+r)
but since V(R+r") = V(r’)
{4V +VE)} v (R+1) = Ey (R+r)

Therefore y(r) and y(r+R) represent solutions with the same energy:
thus they can only differ by a phase factor 6¢ = k.R

y(r+R) = ekRy(r) wherek isaconstant and R = nja + n,b + n,c
Thiswill be automatically satisfied if we substitute:
v, (r) = exp(ikr)u,(r), where u,.(r) = u(r+R)
v, (r+R) = exp(ik.(r +R)) u, (r +R) = exp(ik.R)y (r)
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Conseguences of Bloch’s Theorem

1) Thevalueof k isnot unique. It repeatsin reciprocal space. If we
add areciprocal lattice vector G (=ha* +kb* +Ic*) then:

v (r+R) = exp(i(k.R) y, (r)
Vi r +R) = exp(i(k +G).R) y, 4 (r)
butas exp(iG.R) =1

Vo +R) = exp(ik.-R) p.o(r)

2) k isknown asthe crystal momentum.

It measures the change in phase (k.R) from one unit cell to the next.
It is conserved only subject to £G.

It does not give us the real momentum for the travelling particle.

Brillouin Zones and
dispersion relations

Free electrons have energies
h%k2/2m
h2k-G)3/2m, hn2k+G)2/2m, ...

Describe the dispersion relations L
in either the L

extended/repeated zone L
or | 1

reduced zone e
Schemes s

S
o4
[}
s |
sl
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Repeated Zone Scheme

TR )Yy

band

Allowed
band
Forbidden band| |
Allowed band \__ "\ N/ N\ .
T T T i T T ”
=g 3@ -a 0§ 3@ >Sg K
—
Brillouin
zone

Number of states per Zone (Band)

Use periodic boundary conditions for electrons:
Y (x) = y(x+L), with y(x) = ey, (x)
but as u, (X) is periodic with lattice constant a, and L = N, a
ekNa=1 andso: &k =2n/N,a

3
Number of statesin one 27%1 ,
Brillouin Zoneis: 2% Skl 2N ° = 2N

x 2 for spin states
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1-D Salid

* When we have 1 electron per
atom we have atotal of N

electrons ... thefirst ‘band’ is 4o, = 2E, o
half filled % . &
E o, == EF o
» When we have 2 €lectrons per . Iy
atom we have atotal of 2N .
electrons .. thefirst ‘band’ is soer
full k

Filled band means electrons have no empty states to move into
- Filled band = insulating behaviour

Polymers are 1-D materials
e.g. polyacetylene - (CH),

i . Semiconductor/I nsulator
Alternating bonds 2 elunit cell nauc
H H H H H H H

E

@)
O
@)
@)
@)
@)
@)
<

1

1 1
1 1
1 1
1

F | |
T I
1 1
1 1
1 1
1 1

T
T
T
T
T
T
T
x él

2q n/a n;Za 0 n/2a wla

Symmetric configuration Metal

H H H H H H 1 e/unit cell

C cl cC C A /

c 0c c 9c \ﬁ{c v
H H H H H H H

a n/a n/2a 0 n/2a wla
P k
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Fermi Surfaces for Monovalent and
Divaent metalsin 2-D

For monovalent metals the volume of the Fermi sphereis
only half thefirst Brillouin Zone

&
AN

W

1st zone 2nd zone

(a) (b) ©

For Divaent metals the two volumes are the same

Divalent Metal with Band structure

First Brillouin zone Second Brillouin zone

(a)
Nearly filledband  Map pockets of second zone

with afew holes  together so that they join up -
small number of electrons
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Divaent Semiconductors and Insulators

If crystal potential Vg is stronger the band gaps get bigger.
Eventually al the overlap between the band edges disappears.

The “Fermi Surface” isacube, lowest band isfilled
— material isasemiconductor or an insulator depending on

the size of the band gap
Insulator: .

Metal:

Copper

Even monovaent metals
can have complicated
Fermi surfaces;
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Tight Binding Model

» Atomswith strongly + +
bound electrons interact
quite weakly
» Simplest example:
Two hydrogen atoms - the
h lecular ion H,*
ydrogen molecular ion H, + R 4+

Hydrogen Molecular lon

Hamiltonian is:
hZ e2 e2

H=-—V?- -
2m Arer,  AmEr, 47550

Trial (i.e. guessed) wavefunctions based on atomic
states for single atoms
W=y,tys, Where Ya=Vis (ra)

Evaluate Energy from: - IW*HW ) H o tH
IW*W 1+£S

with Hy, = [y Hy,dr, Hyg = [y Hygdr, S= [y, dr

R large: E. A =0
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Single particle wavefunctions are:
symmetric  (bonding state)
and

antisymmetric (antibonding state)
To form aHydrogen molecule need

two electrons. Both in lowest state

include € ectron-electron interaction.

T e
only with opposite spins + must | | &@_@Dj |
=
| L ||3 -]

If electron spins are parallel
— go into antibonding state with much larger energy.
Energy differenceis origin of Exchange Interaction -

very important for magnetic properties.

Hydrogen molecule has
; bonding and antibonding
\ states split by large

4¢_ energy 2A

/-I_\\lj/—i_\

Bind 4 atoms (2 H, molecules)
\/\/\ to form 4 levels:
\/\/\/ /

Bonding - Antibonding
Antibonding - Antibonding

R g—
'\ —4Ay—  Antibonding - Bonding

Bonding - Bonding
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Build asolid from long chain of N atoms

Band of

M e 2N Stafes
phase fact. = -1,

/
N atoms .,

\
. \
M/\AM elkcszo \‘

+ + + + 4+ 4 phase fact, = 1

o All electrons are still in atomic s-wavefunctions

» Coupled atoms have a phase difference which defines a
wavevector

Couple N atomsto form a crystal

A |
|
|

2N 1s-states, but spread over an energy
band from the symmetric (in-phase) to E
the antisymmetric (anti-phase) levels

6N 2p-states, 2N 2s-states.........

Overlap of wavefunctions increases
for higher levels

.. Band width increases

Alkali metals have 1 outer s-electron per atom
- N electrons per crystal

~. s Bandishaf filled - empty states next to filled states -
therefore the electrons can move when we apply an electric field

. They are metals
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2 (outer) electrons per atom
A

2N electronsin crystal. If bands do not overlap
strongly then the n-s band may be filled.

.. could be an insulator
But

;\nd p- orbitals usually give bands broadened
enough to overlap.

». can also bea metal

Hence Group Il elements (Be, Mg, Ca, Sr, Ba)
are still metals due to overlap of bands.
But

nearly filled bands (and p-like bands) can be more complicated -
show effects such as a positive Hall effect which says that
conduction is by holes in some cases.

Periodic Table

Core states have little overlap e.g. in Sodium the 1s, 2s and 2p
states. Energy bands are very narrow and filled.

Most electronic properties come from the 3sand 3p levels.

Picture repeats as more shells filled.
Families of materials e.g. Alkali metals have similar properties.

Number of electrons per primitive unit cell isodd — ametal.

Number of electronseven — can have afilled band
- aninsulator, BUT often bands overlap .. still ametal
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Periodic Table

Period ;
N
2 ) Be
3 : Mg I I?B I\?B VSB V?B VI7I B ° ’ b 1:8;
4 E
: %
6 19790
7
Transition Metals
E
The 3d bands and the 4s (o e
bands overlap i
Whenthed bandsare partly | A % b ffz. |
filledinelementssuchas = a(e) g 5 :% 4 [
Ni,Mn, Coand Fethen s paa R
materials show magnetic \ Sy
properties é [ e =
7 4 £E A b ,
If the 3d bands arefilled then #| | S B gl
they do not influence the e
propertiesand we can treat et TR TASERES T

materials such as Copper ‘ (e -;F) e\-/‘
as free electron metals.
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4 electrons per atom (silicon and diamond)

Crystal structure is diamond-like. Each atom has tetrahedral
symmetry. Four bondsfor each atom. 2 atoms/unit cell.

Carbon (2s?2p?) forms bonding and o/ \
antibonding states for both sand p —, \ 2
orbitals. Lowest four states from each S
atom mix to form sp® hybrids with
tetragonal symmetry.

Lower 8N sp? states overlap to form the (filled) valence band
.~. electrons cannot move when asmall forceis applied.
~ Itisaninsulator

Group IV Elements

C Si,GeSn
Element a8 Band Gap 1
» Carbon 0.356 5eV W\
(Diamond)

* Silicon 0543 1l1leVv

 Germanium 0566 1.0eV

e Tin 0.646 ameta
(semimetal)

Electron energy

,l Murmber of available
() quantum states
per atom

]
Interatomic distance
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Summary of Band Structure

Metals Semiconductors Insulators
E
N :
é o
a(E)
Grp. | Grp. 11, 111 Grp. IV Grp. IV

Successes and Failures of Simple Band Theory

» Explains why some materials are metals, insulators or
semiconductors

o |dentifies relation between atomic and material
properties

» Explains existence of positive charge (negative mass)
particles and explains effective masses.

* Independent electron approximation cannot account for
collective effects such as ferromagnetism and
superconductivity, and phase transitions driven by total
electron energy.
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