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Band Theory
Need to take account of two main factors in understanding 
the electronic properties of crystals

Atomic structure of atoms

Tight binding model

Periodic crystal potential

Nearly free electron approx.

Start from isolated atoms 
and look at interaction as 
wavefunctions overlap

Start with free electrons
and look at scattering by
the crystal potential

Works well for insulators
and semiconductors

Good for describing the
properties of metals and
their Fermi surfaces

Nearly Free Electron Approximation
Use a travelling wavefunction for an electron, e ikx, with kinetic 

energy 2k2/2m

Assume that this is Bragg scattered by the wavevector G=2π/a to 
give a second wave e i(k-G)x with energy 2(k-G)2/2m

Crystal potential is periodic in real space.  Therefore we can 
Fourier Transform the potential so that:

For a schematic solution we calculate what happens for a 
single Fourier component VG so V(x) = VG(eiGx + e-iGx)
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Formally what we are doing is to solve the Hamiltonian form of 
Schrödinger equation

H ψ =  E ψ
where ψ are the two travelling wave solutions.  Expanding gives:
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New Schrödinger equation is:

so eikx is no longer a solution.  

∴ Choose a combination of two waves:   Akeikx + Bk´eik´x.  
Can then solve the Schrödinger Eq. by writing:
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To simplify this we multiply by e-ikx (and again by e-ik´x) 
and integrate over all space using

Gives a pair of simultaneous equations:
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Solve determinant:

at the Brillouin Zone
boundary
|k´| = |k - G| = π/a
(using G = 2π/a)

Giving two solutions: 

With eigenstates ψ =  ei(π/a)x ± e-i(π/a)x

i.e. Standing waves cosϑ and   sinϑ
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Around k = π/a - δ
solutions are:

• Around the band gap the 
solutions are parabolae -
almost mirror images

• At the band edge the states 
are stationary. i.e. zero 
velocity

• Inverted parabola describes 
the behaviour of holes
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Generalise to include scattering by all 
possible reciprocal lattice vectors

Crystal potential is:

travelling wave eikx is scattered to give: 

ψ = A eikx + B ei(k-G)x + C ei(k-G´)x + …

which is: ψ = eikx (u0 +  uG e-iGx + uG´ e-iG´x + …)

ψ = eikx uk(x)  =   eikx uk(x + a)

uk(x) is called a Bloch function, and it has the same 

periodicity as the crystal lattice (from Fourier series)
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Bloch’s Theorem
For any periodic potential defined by V(r) = V(r + R)
the solutions to the Schrödinger equation

are 

Free electron states have uk(r) = constant
In real solids uk(r) looks like the atomic wavefuntions
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Proof of Bloch’s Theorem

Therefore ψ(r) and ψ(r+R) represent solutions with the same energy: 
thus they can only differ by a phase factor δφ = k.R

ψ(r+R) = eik.R ψ(r) where k is a constant and R = n1a + n2b + n3c
This will be automatically satisfied if we substitute:
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Consequences of Bloch’s Theorem

1) The value of k is not unique. It repeats in reciprocal space.  If we 
add a reciprocal lattice vector G (=ha* +kb* +lc*) then:

2) k is known as the crystal momentum.
It measures the change in phase (k.R) from one unit cell to the next.  
It is conserved only subject to ±G.
It does not give us the real momentum for the travelling particle.
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Brillouin Zones and 
dispersion relations

Free electrons have energies 
2k2/2m
2(k-G)2/2m, 2(k+G)2/2m, ...

Describe the dispersion relations 
in either the 

extended/repeated zone 
or 

reduced zone 
Schemes 
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Repeated Zone Scheme

Number of states per Zone (Band)

Use periodic boundary conditions for electrons:

ψ (x)  =  ψ (x + L),    with  ψ (x)  =  eikx uk (x)

but as uk (x) is periodic with lattice constant a, and L = Nxa

eikNa = 1  and so:   δk = 2π/Nxa

Number of states in one 
Brillouin Zone is:

× 2  for spin states
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1-D Solid
• When we have 1 electron per 

atom we have a total of N 
electrons ∴ the first ‘band’ is 
half filled

• When we have 2 electrons per 
atom we have a total of 2N 
electrons ∴ the first ‘band’ is 
full
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1EFE
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Filled band means electrons have no empty states to move into
∴ Filled band   =  insulating behaviour
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Polymers are 1-D materials
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Semiconductor/Insulator

Metal

Alternating bonds

Symmetric configuration

e.g. polyacetylene - (CH)x
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Fermi Surfaces for Monovalent and 
Divalent metals in 2-D

For monovalent metals the volume of the Fermi sphere is 
only half the first Brillouin Zone

For Divalent metals the two volumes are the same

Divalent Metal with Band structure
First Brillouin zone Second Brillouin zone

Map pockets of second zone
together so that they join up -
small number of electrons

Nearly filled band
with a few holes
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Divalent Semiconductors and Insulators

Metal: Insulator:

If crystal potential VG is stronger the band gaps get bigger.
Eventually all the overlap between the band edges disappears.

The “Fermi Surface” is a cube, lowest band is filled 
→ material is a semiconductor or an insulator depending on 

the size of the band gap

Even monovalent metals 
can have complicated 
Fermi surfaces:

Copper
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• Atoms with strongly 
bound electrons interact 
quite weakly

• Simplest example: 
Two hydrogen atoms - the 
hydrogen molecular ion H2

+

Tight Binding Model
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Hydrogen Molecular Ion
Hamiltonian is:

Trial (i.e. guessed) wavefunctions based on atomic 
states for single atoms

Evaluate Energy from:
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Single particle wavefunctions are:

symmetric      (bonding state)   

and

antisymmetric (antibonding state)

To form a Hydrogen molecule need

two electrons.  Both in lowest state 

only with opposite spins  +  must

include electron-electron interaction.

If electron spins are parallel  

→ go into antibonding state with much larger energy.

Energy difference is origin of Exchange Interaction -

very important for magnetic properties.

Hydrogen molecule has 
bonding and antibonding
states split by large 
energy 2Δ

Bind 4 atoms (2 H2 molecules) 
to form 4 levels: 

Bonding       - Antibonding
Antibonding - Antibonding
Antibonding - Bonding
Bonding       - Bonding

2 atoms

4 atoms

ψ



Bandstructure – HT10 – RJ Nicholas 13

Build a solid from long chain of N atoms

• All electrons are still in atomic s-wavefunctions
• Coupled atoms have a phase difference which defines a 

wavevector

N atoms

 e    , k = /a
phase fact. = -1

 

π

    e   , k = 0
phase fact. = 1

  

Band of
2N Statesika

ika

Couple N atoms to form a crystal
2N 1s-states, but spread over an energy 

band from the symmetric (in-phase) to 
the antisymmetric (anti-phase) levels

6N 2p-states, 2N 2s-states……...

Overlap of wavefunctions increases 
for higher levels

∴ Band width increases

Alkali metals have 1 outer s-electron per atom
- N electrons per crystal
∴ s- Band is half filled  - empty states next to filled states -

therefore the electrons can move when we apply an electric field
∴ They are metals
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2 (outer) electrons per atom
2N electrons in crystal.  If bands do not overlap 

strongly then the n-s band may be filled.
∴ could be an insulator
But
s- and p- orbitals usually give bands broadened 

enough to overlap.
∴ can also be a metal

Hence Group II elements (Be, Mg, Ca, Sr, Ba) 
are still metals due to overlap of bands.
But
nearly filled bands (and p-like bands) can be more complicated -

show effects such as a positive Hall effect which says that 
conduction is by holes in some cases.
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Periodic Table
Core states have little overlap e.g. in Sodium the 1s, 2s and 2p

states.  Energy bands are very narrow and filled. 
Most electronic properties come from the 3s and 3p levels.

Picture repeats as more shells filled.  
Families of materials e.g. Alkali metals have similar properties.

Number of electrons per primitive unit cell is odd  → a metal.

Number of electrons even  → can have a filled band 
∴ an insulator, BUT often bands overlap ∴ still a metal
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Periodic Table

109

Mt
(266)

108

Hs
(265)

107

Bh
(262)

106

Sg
(263)

105

Db
(260)

104

Rf
(257)

89

Ac~
(227)

88

Ra
(226)

87

Fr
(223)

7

86

Rn
(222)

85

At
(210)

84

Po
(210)

83

Bi
209.0

82

Pb
207.2

81

Tl
204.4

80

Hg
200.5

79

Au
197.0

78

Pt
195.1

77

Ir
190.2

76

Os
190.2

75

Re
186.2

74

W
183.9

73

Ta
180.9

72

Hf
178.5

57

La*
138.9

56

Ba
137.3

55

Cs
132.9

6

54

Xe
131.3

53

I
126.9

52

Te
127.6

51

Sb
121.8

50

Sn
118.7

49

In
114.8

48

Cd
112.4

47

Ag
107.9

46

Pd
106.4

45

Rh
102.9

44

Ru
101.1

43

Tc
(98)

42

Mo
95.94

41

Nb
92.91

40

Zr
91.22

39

Y
88.91

38

Sr
87.62

37

Rb
85.47

5

36

Kr
83.80

35

Br
79.90

34

Se
78.96

33

As
74.92

32

Ge
72.59

31

Ga
69.72

30

Zn
65.39

29

Cu
63.55

28

Ni
58.69

27

Co
58.47

26

Fe
55.85

25

Mn
54.94

24

Cr
52.00

23

V
50.94

22

Ti
47.88

21

Sc
44.96

20

Ca
40.08

19

K
39.10

4

------- VIII -------
------- 8 -------

18

Ar
39.95

17

Cl
35.45

16

S
32.07

15

P
30.97

14

Si
28.09

13

Al
26.98

12
IIB
2B

11
IB
1B

10987
VIIB
7B

6
VIB
6B

5
VB
5B

4
IVB
4B

3
IIIB
3B

12

Mg
24.31

11

Na
22.99

3

10

Ne
20.18

9

F
19.00

8

O
16.00

7

N
14.01

6

C
12.01

5

B
10.81

4

Be
9.012

3

Li
6.941

2

2

He
4.003

17
VIIA
7A

16
VIA
6A

15
VA
5A

14
IVA
4A

13
IIIA
3A

2
IIA
2A

1

H
1.008

1

18
VIIIA
8A

1
IA
1A

Group**

Period

Transition Metals

The 3d bands and the 4s 
bands overlap

When the d bands are partly 
filled in elements such as 
Ni, Mn, Co and Fe then 
materials show magnetic 
properties

If the 3d bands are filled then 
they do not influence the 
properties and we can treat 
materials such as Copper 
as free electron metals.

EF
Ni

EF
Cu

g(ε)

(ε - εF)  eV
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4 electrons per atom (silicon and diamond)

Crystal structure is diamond-like.   Each atom has tetrahedral 
symmetry.    Four bonds for each atom.   2 atoms/unit cell.

Lower 8N sp3 states overlap to form the (filled) valence band
∴ electrons cannot move when a small force is applied. 

∴ It is an insulator

Carbon (2s22p2) forms bonding and 
antibonding states for both s and p 
orbitals. Lowest four states from each 
atom mix to form sp3 hybrids with 
tetragonal symmetry.

Group IV Elements

Element
• Carbon 

(Diamond) 
• Silicon 
• Germanium
• Tin

(semimetal)

a0

0.356

0.543
0.566
0.646

Band Gap
5eV

1.1 eV
1.0 eV
a metal

C Si,Ge Sn
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Summary of Band Structure

E

g(E)

Metals

Grp. I Grp. IVGrp. IVGrp. II, III

Semiconductors Insulators

Successes and Failures of Simple Band Theory

• Explains why some materials are metals, insulators or 
semiconductors

• Identifies relation between atomic and material 
properties

• Explains existence of positive charge (negative mass) 
particles and explains effective masses.

• Independent electron approximation cannot account for 
collective effects such as ferromagnetism and 
superconductivity, and phase transitions driven by total 
electron energy. 


